CERTIFICATE # **Certified Passive House Component** Component-ID 1172vs03 valid until 31st December 2018 Passive House Institute Dr. Wolfgang Feist 64283 Darmstadt Germany Category: Air handling unit with heat recovery Manufacturer: Renson Ventilation nv **Belgium** Product name: Endura Delta 380 PH Specification: Airflow rate < 600 m³/h Heat exchanger: Recuperative # This certificate was awarded based on the product meeting the following main criteria Heat recovery rate $\eta_{HR} \geq 75\%$ Specific electric power $P_{\text{el,spec}} \leq 0.45 \, \text{Wh/m}^3$ Leakage < 3% Comfort Supply air temperature > 16.5 °C at outdoor air temperature -10 °C Airflow range 55-269 m³/h Heat recovery rate $\eta_{HR} = 86\%$ Specific electric power $P_{\text{el.spec}} = 0.25 \,\text{Wh/m}^3$ ■ At an airflow of $102 \, \text{m}^3/\text{h}$, a heat recovery of $\eta_{HR} = 90 \, \%$ is reached. #### **Renson Ventilation nv** Maalbeekstraat 10, 8790 Waregem, Belgium #### Passive House comfort criterion A minimum supply air temperature of 17.8 $^{\circ}$ C is maintained at an outdoor air temperature of -10 $^{\circ}$ C. This comfort criterion was fulfilled by use of an internal electrical preheater together with an optional external electrical preheater with a power of 1000 W. #### **Efficiency criterion (heat recovery rate)** The effective heat recovery rate is measured at a test facility using balanced mass flows of the outdoor and exhaust air. The boundary conditions for the measurement are documented in the testing procedure. $$\eta_{HR} = \frac{(\theta_{ETA} - \theta_{EHA}) + \frac{P_{el}}{\dot{m} \cdot c_p}}{(\theta_{ETA} - \theta_{ODA})}$$ With η_{HR} Heat recovery rate in % θ_{ETA} Extract air temperature in °C θ_{EHA} Exhaust air temperature in °C θ_{ODA} Outdoor air temperature in °C P_{el} Electric power in W m Mass flow in kg/h c_p Specific heat capacity in W h/(kg K) | Heat recovery rate | | | |-----------------------|--|--| | η _{HR} = 86% | | | ## **Efficiency criterion (electric power)** The overall electrical power consumption of the device is measured at the test facility at an external pressure of 100 Pa (50 Pa, respectively, for the intake and outlet). This includes the general electrical power consumption for operation and control but not for frost protection. Specific electric power $$P_{\text{el,spec}} = 0.25 \,\text{Wh/m}^3$$ #### **Efficiency ratio** The efficiency ratio provides information about the overall energy performance of the respective ventilation unit. It specifies the achieved reduction in ventilation heat losses by using a ventilation unit with heat recovery rather than without. | Efficiency ratio | | | |-----------------------|--|--| | $\epsilon_{L} = 0.69$ | | | 2/4 Endura Delta 380 PH #### Leakage The leakage airflow must not exceed 3% of the average airflow of the unit's operating range. | Internal leakage | External leakage | |------------------|------------------| | 1.31 % | 1.23% | #### Settings and airflow balance It must be possible to adjust the balance of airflows at the unit itself (either between the exhaust and the outdoor airflows or between the supply and the extract airflows, if the unit is respectively placed inside or outside of the insulated thermal envelope of the building). - This unit is certified for airflow rates of 55–269 m³/h. - Balancing the airflow rates of the unit is possible. - The user should have at least all the following setting options: - √ Switching the system on and off. - \checkmark Synchronized adjustment of the supply and extract airflows to basic ventilation (70–80%), standard ventilation (100%) and increased ventilation (130%) with a clear indication of the current setting. - The device has a standby power consumption of 5.48 W and therefore not complies with the target value of 1 W. The device should be equipped with an additional external switch so that it can be disconnected from the mains, if required. - After a power failure, the device will automatically resume operation. ### **Acoustical testing** The required limit for the sound power level of the device is $35\,dB(A)$ in order to limit the sound pressure level in the installation room. The sound level target value of less than $25\,dB(A)$ in living spaces and less than $30\,dB(A)$ in functional spaces must be ensured by installing commercial silencers. The following sound power levels are met at an airflow rate of $269\,m^3/h$: | | Duct | | | | |------------|------------|------------|-------------|-------------| | Device | Outdoor | Supply air | Extract air | Exhaust air | | 52.0 dB(A) | 57.0 dB(A) | 65.3 dB(A) | 56.1 dB(A) | 65.8 dB(A) | - The unit does not fulfil the requirements for the sound power level. The unit must therefore be installed acoustically separated from living areas. - One example of suitable silencers for supply and extract air ducts is mentioned in the detailed test report or can be obtained from the manufacturer. It is recommended to identify suitable silencers for each individual project. # Indoor air quality This unit is equipped with following filter qualities by default: | Outdoor air filter | Extract air filter | |--------------------|--------------------| | G4 | G4 | On the outdoor air/ supply air side the filter quality class F7 is recommended. If not standard configuration, the F7 filter is available as accessory part. #### **Frost protection** Appropriate measures should be taken to prevent the heat exchanger and optional downstream hydraulic heater coil from getting damaged by frost during extreme winter temperatures (-15 °C). It must be ensured that the unit's ventilation performance is not affected during frost protection cycles. - Frost protection of the heat exchanger: - ✓ In order to protect the heat exchanger from freezing up, the unit is equipped with an internal electrical preheater with a power of 1000 W. In order to ensure the frost protection even at low outdoor air temperatures, installation of an additional external electrical preheater with a power of 1000 W is recommended. The laboratory measurement has proved, that this frost protection, using both preheaters together, at an upper airflow rate and an outdoor air temperature of -15 °C is sufficient. By the laboratory testing, the preheater was first activated at an outdoor air temperature of -6.3 °C. - Frost protection of downstream hydraulic heater coils: - \checkmark In order to protect a downstream hydraulic heater coil, the fans are switched off in case the supply air temperature drops down to 5 $^{\circ}$ C and the Stand-By mode is activated. 4/4 Endura Delta 380 PH